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!. In [i] we considered the flow of a gas into a spherical cavity. In the present 
paper we investigate the asymptotic behavior of gasdynamics functions when an ideal gas 
flows into a cylindrical cavity. 

In the rarefaction wave with center in the plane (r, t) which arises as a result of the 
flow of gas into a cylindrical cavity, the entropy in the principal term is constant. There- 
fore we take as our equation of state 

p = Ap% (i.!) 

As a result of the application of a transformation of the coordinates and functions 
which is invariant with respect to the equations of gasdynamics~ we can assume that the 
constant A = 1 and that the values corresponding to the start of the flow are ro = 1 for the 
radius of the cavity, to = --i for the time, and u = --i for the velocity of the free boundary. 
The system of gasdynamics equations in this case has the form 

Oc Oc ] 01.$ uc 
( h - - t )  -~T~- u-~- -~ c-~-r ~--7- = 0, (1.2) 

8 u  O~z Oc 
--ot + u ~ 7  + (h - -  i) c ~ 7 =  O, h = (z + 9 / ( z - -  1) 

(u is the velocity of the gas and c is the velocity of sound). 

2. The centered rarefaction wave in a neighborhood of the vertex A (r = i, t = --i) 
will be plane in the principal term, and therefore the asymptotic behavior in the neighbor- 
hood can be represented as an expansion in powers of (t + i) with coefficients which depend 
on the quantity ~ = (r -- l)/(t + I): 

] =/0(~) + fl(~)(t + 1) ff = u, c). ( 2 . l )  

The c u r v e s  ~ = c o n s t  c o r r e s p o n d  i n  t h e  p r i n c i p a l  t e r m  t o  t h e  a c h a r a c t e r i s t i c s  o f  t h e  
b u n d l e ,  w h e r e  t h e  q u a n t i t y  ~ v a r i e s  f r o m  t h e  v a l u e  ~ = ~o = - -1 ,  c o r r e s p o n d i n g  t o  t h e  f r e e  
b o u n d a r y ,  t o  t h e  v a l u e  ~ = $~ = u ~ + c o , c o r r e s p o n d i n g  t o  t h e  s e p a r a t i n g  c h a r a c t e r i s t i c  [u  o ,  
c ~ a r e  t h e  v a l u e s  o f  t h e  u n p e r t u r b e d  v e l o c i t y  a n d  t h e  v e l o c i t y  o f  s o u n d  a t  t h e  p o i n t  A ( r  = 
1 ,  t = - - 1 ) ] .  By s u b s t i t u t i n g  ( 2 . 1 )  i n t o  t h e  s y s t e m  ( 1 . 2 )  a n d  c o m p a r i n g  t h e  c o e f f i c i e n t s  o f  
c o r r e s p o n d i n g  p o w e r s  o f  t + 1 ,  we o b t a i n  

u = - - i ~ -  (~-~1)-~-  h ( 2 _ h ) - 4 - h ~ ( 3 •  K ( ~  ~T t)h/~ (t-t-:l)-~- . . . .  (2.2) 

c= ~+__A+ [ ~ + i  (• + i f  (:~- 5)(,- 9 ] 
[ ~ (Z---~) 2h ~ (3 •  5) ~ - -  ~ K (~ + t) h/~ (t + 1) + . . .  

At ~ = 5/3 and ~ = 3(h = 4.2) we find singularities. The value of the constant is de- 
termined by the initial distribution of the functions in the unperturbed gas in a neighbor- 
hood of the point A. If at t = --I we have u = u ~ + u'(r + i), c = c ~ + c'(r -- i), then 

~--h [h + 2 u, (h-9 (h+9) c' ] K = (hc ~ - -  3 (h - -  t) u ~ 
2h 2 (2 h ~  " 

It is important to note that for the initial state corresponding to rest [u ~ = u' = 
c' = 0, and consequently c ~ = 1/(h -- i)] the value 

(,~ - ~)~ (3,, - ~ ) f  2 A _ ? / "  
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i.e., K > 0 for 5/3 < ~ < 3 and K < 0 for x > 3. 

The determination of the functions fo, f, in the expansion (2.2) was based on the 
assumption that 

A(~)(t + t)//o(~) -~o  a~ t - - , - -~.  

For u < 3 this condition is satisfied over the entire range of variation of 6. When 
> 3(h < 2) and ~ § --i, 

~(~)(t + ~)/co(~) ,,~ (~ + t)h/2-~(t + 1) --,,-oo. 

Consequently for ~ > 3 the determination of the asymptotic behavior in a neighborhood 
of a point in the region adjacent to the free boundary, E = --i, requires further investiga- 
tion, which we shall carry out below. 

3. The symptotic formulas (2.2), when I < ~ <3, indicate the existence of a time in- 
terval --i ~ t 4 tt during which the velocity of the free boundary is constant. The quan- 
tity ~ at the free boundary is constant at E = --i for these values of time. Therefore the 
determination of the value tt and the asymptotic behavior in a neighborhood of the free 
boundary will be based on an expansion of the gasdynamics functions in powers of q = E + 1. 
Taking account of the asymptotic behavior obtained in Section 2, we can represent the de- 
sired expansion in the form 

u = - - i  + ut(t)~ I q- u,(t)Tl= + . . . .  c = ct(t)~l + c,(t)~l ~ + . . . .  q- (• --/= 513), ( 3 . 1 )  

where a = 2 when i < u < 5/3; ~ = h/2 when 5/3 < u < 3. 

The equations determining ut (t) and c, (t) are obtained in the usual way and on the 
assumption that n/t << 1 over the entire range of integration, in particular as t->0, while 
the initial data are obtained from the asymptotic behavior described in Sec. i: 

c~(t+i)--ci+-~'(u+l)u,c*+-~- x) - -? - -~ i  = 0, ( 3 . 2 )  

# 

u~ (t + I) - -  u~ + u~ + (h - -  1) c; = 0,~ l < z < 3; 

u ~ ( - - i )  = 2I(• + 1), c ~ ( -  t)  = (x - -  t ) / ( x  + i ) .  ( 3 . 3 )  

The equations for the functions ua(t), c2(t) are: 

(t ,-{-1)" t + t  ! =  (h- - i ) [c '2( tW l ) - - 2 c 2 ] + ( 2 h - - t ) u t e ~ + ( h - - -  l)c,u~ + ---=--[c,--u~co_+_.y_~U O, (3 .4 )  

! 

u~ (t + t) 2u.z i- 3u~u.z -~- 3 (h --  1) c,c, =: 0, 1 < z < 5'3; 

i) ~ (3z --  5) (t (5 - -  • (z --  t) ~ (t 3(u - - l )~  ~ - l ) ,  c ~ - - 2 ~ ) ~ : ~ - - ~ )  , ~-1) as t - + - - � 9 4  (3.5) u~ ~ (• + ~ 

2 �9 [((~+~) ~I), (~+~)] 5+x c~u~+t+~ ;~:2~r t ) +  [k(x_~) ,  _ _ " = ~ J C ~ +  2 ( x _ i )  - -7-c~  = O, (3.6) 

I u - ~ - l ,  I 3 u - - I  , 3 u - - t  
u ' , t t +  l)  2 ~ " ~ - ' - - t " $ ~ - 2 ( x - - t ) t t ~ t t u - l - ~ ' ~  c~c~=O.' 5 / 3 < u < 3 ;  

(u - -  t) (u ~ 5) K (t + t) as t - + - - t .  (3.7) u~K(t+1), r 2(3~-- i; 

THEOREM. If 1<~<2, then the functions u~(t) and c,(t) are finite and nonzero in 
the interval --i < t < 0. If 2<~<3, then there exists a value t 1=t1(~),-1<t1<0 , 
such that ut(t) and c,(t) tend to infinity as t§ 

Suppose that 

1 + t L (t) = t--+ttt M( t ) ,  u~ (t) = -'-7-- (t), ( 3 . 8 )  

then M(t) and L(t), according to (3.2), (3.3), are determined by the system 

aM M[(x+I)L+(~--3)] M=--o% L=--~; 
d-Z = ~ (L~_ Z + (a-- I) MD ' 

(3.9) 
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Since c > 0 and ~ > 0, 
integral curve (1) in a neighborhood of the node 

L = x 2_--~M+ 3_~ 

The axis M = 0 is the integral of Eq. (3.9). 
points of Eq. (3.9) will be: 

2dM 
t = -- exp -- M[(uq-i)Lq-(• (3.10a) 

dL 
t = - - e x p  --_ L ~ .  (3.!0b) 

it follows that M < 0. The asymptotic behavior of the desired 
(M = --co, L = --co) has the form 

(u -- i) 2 (5 -- 3u) (2 -- u) I 
( 5 +  >:) ( 3 _  u)a M'--- ~ -~- . . .  (3.11) 

In the half-plane M ~-~ 0 the singular 

3-:~ ~ - t ~ )  O(L=O,M=O), A(L=i,  M=O), (L=-+-oo, M=,oo),  C L=~-.~i , M=--:Z.~t 

LE~LMA. In the half-plane M < 0 the integral curve (1) reaches the point 0 for i < ~ < 
2, not intersecting at any point the zero isocline, which is the straight line (g): L = 
(3 -- z)/(~ q- i); for ~ = 2 it coincides with the line L = 2M + i; for 2<z<3 it inter- 
sects the line (g) below the point C without intersecting at any point the infinity iso- 
cline, which is the ellipse (f): 

L 2 - L + ( h - t ) M  2 = 0 .  

Proof of the Lemma. In the region L < 0, M < 0 the integral curve (Z) lies above the 
hyperbola (d): L 2 -- L= (h -- I) 2M2 if I<z<5/3, coincides with it when ~ = 5/3, and 
lies below it if 5/3 < z < 2. This follows from the sign of the asymptotic value of the 
difference between the values of L for the same value of M on the curves (Z) and (d) in a 
neighborhood of the point (L = --~, M = -~): 

L( l )  - -  L (d )  ,'-, (5 - -  3 u ) / 2 ( 3  - -  ~) 

and  t h e  s i g n  o f  t h e  d i f f e r e n c e  b e t w e e n  t h e  v a l u e s  o f  t h e  r i g h t  s i d e  o f  Eq. ( 3 . 9 )  on t h e  
c u r v e  (d )  a n d  t h e  t a n g e n t  o f  t h e  a n g l e  o f  i n c l i n a t i o n  o f  t h e  t a n g e n t  l i n e  t o  t h e  c u r v e  ( d ) :  

dM ( d M )  __ ( 3 > ~ - - 5 ) M  

dL ~ d 4(L 2 - L  {-(h-- i)  MS) " 

The curve (Z) may hit the point 0 according to one of the asymptotic formulas 

L ~ C (M)~/(3-u); (3.12a) 

2 (3.12b) L _~ (x - -  2) (u - -  t) M~" 

The asymptotic formula for the curve (d) in a neighborhood of O(0, O) will be 

L ~ - - ( h  - -  i ) M  2. ( 3 . 1 3 )  

The difference between (3.12b) and (3.13) is positive when i < • < 5/3 and negative when 
5/3 < ~ < 2, therefore when i < u < 5/3 , the integral curve (1) lies between the integral 
M = 0 and the hyperbola (d) (Fig. i) and hits the point O(0, 0) in accordance with the 
asymptotic formula (3.12a) for some negative value of the constant C, which depends on the 
index ~: When 5/3 < ~ < 2, the integral curve cannot hit the point O(0, 0) from the direc- 
tion of M < 0, and therefore it intersects the axis L = 0 at a value M < 0. The hyperbola 
(h) : L 2 -- L ---- (h -- i)2M 2 q- (h-- l)(3u -- 5)M/(3 -- u), before intersecting the zero isocline (g) 
or the infinity isocline (f), lies below the integral curve (1) when 5/3 <x< 2 and above 
it when 2 < M < 3. This follows from the sign of the asymptotic value of the difference 
between the values of L for the same value of M in a neighborhood of the point (L = -~, M = 
-~): 

L ( l )  - -  L (h)  ---~ (2 - -  x) (u - -  i )  a (5 - -  3• 
8 (3 - -  X) 2 (5 -}- z)  M ~ 
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I 

/ I I ~-D 

Fig. i 

and the sign of the difference between the values of the right side of Eq. (3.9) on the 
curve (h) and the tangent of the angle of inclination of the tangent line to the curve (h): 

dM (dM) __ (3u - -  5) M ~ [(u - -  3) L + (u - -  l )  -F- (h - -  i ) ( 3  - -  u) M]  
d'-~ - -  ~ h - -  i4  (h - -  l )  (3 - -  u) M 2 q- 2 '(3u - -  5) M]  (L g - -  L q- (h - -  t )  M~)" ( 3 . 1 4 )  

The sign of the difference (3.14) is positive when n> 5/3, while it is negative for 
~< 2. To see this, we note that the denominator of (3.14) is positive outside the infinity 
isocline (f), since it is greater than zero when M< M 0 ---- [(8- 3~)(~- I)]/[4(3--~)] and 
M 0 > M 1 = (5- 3~)/(3- ~)h are the coordinates of the point of intersection of the curves 
(f) and (h). The numerator of (3.14), set equal to zero, coincides with the asymptotic 
equation for the hyperbola (h); therefore its sign, and consequently the sign of the dif- 
ference (3.14), will be determined by substituting some point belonging to the appropriate 
branch of the hyperbola (h), for example (L----0, M---- [(3~--5)(~- I)]/2(3 --~)), and when 

> 5/3, it will coincide with the sign of the fraction (2 -- ~)/(3 -- u). Furthermore, the 
hyperbola (h) intersects the isocline (f) at a point (L~, Mx) lying to the left (to the 
right) of the zero isocline (g) if 5/3 < n < 2 (if 2<u < 3). This follows from the quadratic 
equation determining the quantity X=LI -- (3--u)/(~ q- i): 

5--3~ v --  8(~--2) n x~ + ~ ~, - , - ~ _ - - 7 ) , =  v. 

Consequently when 5 / 3 < u < 2 ,  the integral curve (1), after intersecting the axis L = 0, 
will intersect the infinity isocline (f), and according to the scheme of isoclines (see 
Fig. i), it will hit the point 0(0, 0). Since L > 0, the asymptotic behavior will be given 
by (3.12a). When ~-----2, the integral (1) coincides with the straight line L = 2M + i. 
When 2 < ~ < 3, the integral curve (1) will not intersect the infinity isocline (f) but 
will intersect the zero isocline (g), after which it will go off to the point (L = =o, M = 
--=), since the point of intersection of the hyperbola (h) with the line (g) lies to the left 
of the point of intersection of the hyperbola (h) with the ellipse (f), while the integral 
curve (1) lies below the hyperbola (h) (scheme of isoclines shown in Fig. i). 

Proof of the Theorem. For I < ~ < 2 the curve (1) does not intersect the zero iso- 
cline (g) anywhere as M varies from --= to 0. According to the quadrature (3.10a), along 
the curve (1) the quantity t varies monotonically from--i to 0, while as M+O, the quantity 
tNM 2/(3-x) or MNt(3-~)/2, and by virtue of the asymptotic formula (3.12a), the quantity L 
t. Consequently, by (3.8), the functions ux(t) and c1(t) remain finite in the interval 
--i < t < 0, and for t = 0 the function u~(t) remains finite, while c~(t) becomes infinite: 

c~(t) ~ tr (3.15) 

For ~ =2 , the functions u~(t) and c~(t) can be written explicitly as follows: 

ul(t ) = ( t  -F t)(2t - -  1) /3 t ,  cl(t ) = (t + 1)8/3t .  

For 2 ~ u <  3 the curve (1) does not intersect the infinity isocline anywhere, and therefore 
the integral under the exponential sign in the quadrature (3.10b) increases constantly, re- 
maining finite as L varies from--~ to +~. Consequently the value of t increases monotoni- 
cally from--i to tx < O. As t->tx, the functions L and M tend to infinity according to the 
asymptotic formulas : 
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In an analogous manner, u~ 
in this case 

L _ - -  2 t~ u - - t  t~ 
~-~-ttl--it' M - - - - - x + i t -  ~ "  

The functions u~(t) and c~(~) correspondingly tend to infinity according to the asymptotic 
formulas : 

u~ (t) ~ 2 t + tl (t" "-~ • - -  t t + t~ 
C~ )--~-~{t~--t" (3.16) 

Remark. The function u~(t) is monotone decreasing and the function c~ (t) is monotone 
increasing in the interval --i < t < t~. To see this, we note that for t =--i we have 
u~'(t) > 0 and c,'(t) > 0. The derivative c,'(t) cannot vanish when t = to if u'(t0) < 0 

,, t ~ 
for t < to, since we then have c~(to) > 0 and c,(to) --------~-(~-~)~l(~o)Cl(t0)~- c~(t0)>O. 

'(t) cannot vanish when t = too if c[(t) < 0 for t ~ too~ since 

,, 4 , 
~ (too) = - -  ~ c~ (too) e~ (too) < O. 

Investigation of the Functions u2(t), c2(t)~ The functions ua(t), c2(t) are the solu- 
tions of systems of linear equations whose coefficients and right sides are continuous func- 
tions of t, u,(t), and c~(t). Consequently Ua(t) and Ca(t) are finite in the same intervals 
as u:(t) and c1(t). From the system (3.4) and the asymptotic formula (3.15) it follows that 
for i < ~ < 5/3 and t->O we have u2(t ) N t1-~, c~(t) N t-(i+~)/2. From the system (3.6), (3.7) and 
the asymptotic formula (3.15) it follows that for 8/3<~<2 and t+0, u2(t) is finite and 
c2(t ) N t(i-x)/2] The system (3.5) is invariant with respect to the transformation u~ = KV2, 
c2 = KW2. Here the functions Va(t) and W2 (t) are independent of the value of K. Making 
use of the monotonicity of the functions u~ (t) and c, (t), as in the preceding remark, we 
can prove that the function V2(t) is monotone increasing and the function W2 (t) is monotone 
decreasing in the interval--i < t < t,. From the system (3~ (3.7) and the asymptotic 
formula (3.16) it follows that as t->t:, 

V2 ~__L(h - -  i)(t~ - -  t)--(h+2)/2, W~ ~-- - - L ( t l  - -  t)--(h+2)/2, 

L > O  

and since Va(t) and Wa(t) are monotonic, the constant L > 0. Consequently the asymptotic 
behavior of the functions u2(t) and ca(t) as t+t~ can be given by the formulas 

I 
u2 ~-- K L  ( t ~ - -  t)-(h+~)/~, c~ ~_ (h - t) K L  (t 1 -  t)-(h+2)/2, L > O. 

Equations (3.2) were obtained on the assumption that ~/t is small. If we also take 
account of the ratio of the latter to the earlier terms, then in the time interval--I < t < 
q(• the formulas (3.1) obtained earlier for the asymptotic behavior in a neighborhood of 
the free boundary can be used only if ~/t is small when i < • and ~h-2 (t: -- t) -h is 
small when 2<~<3. 

4. In order to find the asymptotic behavior for i < ~ < 2 in a complete neighborhood of 
the point 0 (r = 0, t = 0), the gasdynamics functions can be represented in the form 

u = u(s), c = r(3--:~)/2 c(s), where s ----- (r -~- t ) / t .  ( 4 .  ! )  

This representation is based on the asymptotic behavior found earlier for a neighborhood of 
the free boundary in this range of ~ as r+0, t+0: 

u~ --I, c~-- -- D(i-~)r(3-x)/2 (4.2) 

and its validity is bounded by the condition that ~/t is small, which if r~O and t-~0 is 
equivalent to the condition that s is small. The value of s varies from s = 0 on the free 
boundary to s = -~ as t +--0 and from s = +=o as t-~+0 to s = 1 (r = O~ t > 0). As r~O, the 
equations determining the functions u(s) and c(s) have the form 

u' = O, c' [(s - ~)~ + (s - -  1)1 = - ~ .  ( 4 . 3 )  

Taking account of the asymptotic behavior as s+0 [this follows from (4.2)], we see ~hat ~he 
solution of (4.3) will be 
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u = --i, c = Ds/(s -- i). (4.4) 

The solution thus obtained is not valid in the entire neighborhood of the point 0, since 
on the axis for t > 0, according to (4.1), (4.4), cNr(i-u)/2-+oo. There arises a shock 
wave moving from the reflection axis. Since ahead of the front we have p ~ r(3-u)/(u-i) 
u --~ --i, we must look for the solution behind the front in the form 

u = u(s), p = r ( a - , ) / ( , - t )  p(s), p = r(3-u)/(X-Op(s) -+ c = e(s). (4.5) 

It can be seen that the shock wave will be of infinite intensity and the flow behind the 
front will not be isentropic. The entropy quantity can be represented in the form 

A = r x - ~ A  (s). 

The functions u(s), c(s), A(s) are determined by the system of equations: 

(s - -  t ) [ u  , (~ - -  I ) ] A '  = (3 - -  •  ( 4 . 6 )  

2c'[u(s  - -  t )  - -  ( s  - -  t )  ~] + ( x  - t ) ( s  - -  l ) c u '  + ( •  - -  t ) u c  = O, 

x ( u  - -  s + I )  [(•  - -  l ) ( s - - i ) ( u  - -  s + l )u '  + 2cc' l - -  (3  - -  x ) ( s  - -  i )c~  = 0 

a n d  t h e  b o u n d a r y  c o n d i t i o n s  o n  t h e  f r o n t  s = s b a n d  o n  t h e  a x i s  s = 1 :  

u (Sb) . . . .  I + h -h-- I Sb, C (Sb) - ~/~-+--i Sb, U ( t)  = 0, C (1) ~= cons t  =/= O. ( 4 . 7 )  

The  s y s t e m  ( 4 . 6 )  h a s  t h e  f i r s t  i n t e g r a l  

M a k i n g  u s e  o f  t h i s ,  b y  m e a n s  o f  t h e  s u b s t i t u t i o n  

c = = L ( s - -  t )  2, u = ( s - - l ) ( K  § 1) ( 4 . 8 )  

we r e d u c e  t h e  s y s t e m  ( 4 . 6 )  t o  a n  e q u a t i o n  a n d  a q u a d r a t u r e :  

dL L [ ( t - - x )  u ( K 2 + L K ) - - ( 3 - - x ) L - - x ( x + t ) K ( K 2 - - L ) ] ( ~ r  
d K - - K [ ( K  2 + L K )  z ( x - t ) + ( 3 - •  2 - L ) ] '  ( 4 . 9 )  

dK L [ 2 u ( z - - t ) ( K + t ) + ( 3 - - u ) ]  - - • 2 1 5  I ) ( K + t ) K  ~ 
d'-~ ---~ x(x -- I) (K 2 --L) (s -- I) (4.10) 

According to (4.7), (4.8), L(1) = ~, and from (4.10) it follows that K(1)=--(i ~ (h--2)/ 

2x) -- K0. The point (L = =, K = Ko) is a saddle-type singular point of Eq. (4.9), and the 
desired integral curve coincides with its separatrix, which emanates from this point in the 
direction of 

L = x/<~ (K o + 1) 
[4,K 0 - -  (3 - -  n)] (K - -  K0) 

u n t i l  i t  i n t e r s e c t s  t h e  p a r a b o l a  L -- (h  + 1 ) K  a ,  o n  w h i c h  l i e s  t h e  p o i n t  c o r r e s p o n d i n g  t o  t h e  
s h o c k  w a v e .  Th e  q u a d r a t u r e  ( 4 . 1 0 )  g i v e s  u s  t h e  v a l u e  o f  s = s b c o r r e s p o n d i n g  t o  t h e  w a v e  
f r o n t .  On t h e  f r o n t  o f  t h e  s h o c k  w a v e  t h e  v a l u e s  o f  u a n d  c w i l l  b e  f i n i t e ,  a n d  t h e  p r e s s u r e  
a n d  d e n s i t y  w i l l  b e  o f  t h e  o r d e r  o f  r (3 -x ) / (x - i ) .  On t h e  a x i s  (r = 0, t > 0) u = 0, p N t (3-x) / (z- i ) ,  

A(s)  = oo, p = O. 

5. For 2 < • < 3 the asymptotic representation of the functions in a neighborhood of 
the point on the free boundary (t = t~, r = r(t~)) is taken in the form 

t + q ( t  ~ t)2/(h-~)Zh/(h-2)l~(Z), u = - - l - - - ~ h i ( t + t O ( t ~ - - t W ( h - ~ ) 1 2 ( Z ) ,  Z=~l(h--~) /h/( t~-- t ) .  ( 5 . i )  

This representation is based on the asymptotic behavior found in See. 3 in a neighborhood of 
the free boundary and the condition for its applicability. The equations determining the 
functions f,(z) and f~(z) have the form 

d/:  (h - -  2) l~ + (h / t) 2 (2 - -  h) 1~ + h (2h 2 - -  4h + 4) f2 - -  ha. 

df'-'~ : :  (h - -  1) 2 [(2 --  h) l~ + 2hl~] + (h --  2) ]~f~ + 2h]~ --  h21~ ' ( 5 . 2 )  
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I i ."  

Fig. 2 

Fig. 3 

h(h-- 2) f~.i- h ( h  - ])'(2 -h)./2-Fh 2(2h 2--i~:h~-4) i ~ - h  a 2 

(h 2) ~ ~ .... !h ~- .§ (h - i )  (z - h) ]~ p ( 5 . 3  ~. 

When t < tl, the value of z corresponding to the free boundary is z = +0, and according 
to the asymptotic behavior found in Sec. 3, as z~+0, we have 

K L h  h "o ..~Lh zh / . ,  f 2 ( z ) =  t - - .  , t Z i . .  (5 .4)  

The desired solution will be an integral curve which has the asymptotic behavior (5.4) as 
z-~+0 and satisfies the conditions on the free boundary for some value of z > 0. The system 
written out above has an exact solution with the asymptotic formula (5.4) as z->0: 

f, ]s, I ~ ( / , -  ~I) (J ,Kh, . -z /h  I 
t ~ )  = '  

which coincides with the desired solution on some interval of the values of z. The desired 
solution is determined from an investigation of Eq. (5.2). The scheme of isoclines is shown 
in Fig. 2. If the functions fl(Z) and f2(z) are to be single-valued, the integral curve (~) 
of Eq. (5.2) must not intersect the straight lines LI,2 outside of the singular points of 
Eq. (5.3): 

(LJ'e)f; - - z -  t~ Ih'-" ; ( h - -  ~ ) (2  - i : . ) i . , j .  

The zero isoclines of Eq. 

J~: @--  ~? ( L  -- tT) ( f~,--  f : ) ,  f :  

The infinity isocline will be the curve 

z (h-  ~)z( .~. .2)L.( /~:  I~)(;. ;.~}- 

(5.2) will be the straight line f2 = 0 and the hyperbola 

:, (i~ ~ ~i'~ E ~ ~ V ~ .  ~ ~.~, ~-~ 
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It can be seen that 

The singular points of Eq. (5.2) will be: 

A (fl :- ~, f2 :: t), B (fl .... 0, f2 : ]$), C (/1 ~- 0, f2 -:: ]7), F (f] 

Further investigation will depend on the sign of K. 

h ~ _ h ~ 
(2-~ , f '  /'~ , ---S-~) ~ 

A. K > 0. The desired integral curve of Eq. (5.2) joins the points A and F by a 
separate "whisker" of the node F -- the integral fl = f2( -r ~ fx ~ i, h2/(h -- 2)" = fxF 
fl < ~) -- and joins the points F and B by the separatrix of the saddle point B, which is 
different from the integral fl = 0 (see Fig. 2). To the value f~ = 0 corresponds z = ~, 
i.e., t = t~. The integral curve has a break-point at the node B; this is admissible, since 
the curve corresponding to the point B is the characteristic of the initial gasdynamics sys- 
tem. The equation of the free boundary when tl < t < t~ + e and E is sufficiently small 
in the principal term will be z = ZB, where z B is the value of z corresponding to the point 
B. The fact that the corresponding conditions will be satisfied on the free boundary 
follows from the asymptotic formulas for Z§ 

- -  h 2 2h 8 (3h - -  2) . 
I21 ~ - (h - 2) 3 (t~ - i )  z ~  (t~ - i )  ( h -  2) ( h ~ - : ~  ~ - ~)8 t z  - z s ) .  

The asymptotic behavior of the gasdynamics functions in a neighborhood of a point on 
the free boundary (r: = r(tl), tl) is given by the following formulas: 

U ~ - -  ~ - - ~ h  ( i~_ tl)]ZB[h/(h--2)(tl__~)2/(h--2)~_ (~-~2)22h(ah--2) ( l_~ tl) IgBIh/(h--~")(~ - tl)2/(h--2)(-~B Bz -- ~), 

2h / "  Z B - -  Z 
C ,~, h --'""2 ( l  -~- t l)  I ZB I(h+8)/8(/'-8) (t - -  t08/(1~-8) V (  h ~-2~ ~ - - -  t)" 

Thus, along the free boundary z = z B for t > t: the velocity begins to increase. 

B. K < 0. In this case, according to the asymptotic formula (5.4), the motion along 
the integral curve takes place in the direction of increasing f~. When the point F 

(]i ---- ]8 = ~I is reached, the functions f1(z) and f2(z) are no longer single-valued, since 

this point, not being a singular point of Eq. (5.3), lies on its infinity isocline, the 
straight line L2. The ~ characteristics intersect and have in the plane (r, t) an envelope 
z = ZF, where z F is the value of z corresponding to the point F. Consequently there arises 
a shock wave which goes out to the free boundary at time t = tx and gives it an infinite 

acceleration. 

6. When ~>3 , the asymptotic equation (2.2) obtained in Sec. 2, as ~ § t § 
will be valid only in the part where the values of ~ = ($ + i)(i + t) 2/(h'2) are suffi- 
ciently large, and as n ->~, in the principal terms, it will have the form 

u ~ - - - -  l q - h h - - - - J ( l  -~-~) I - l - - - 5 - - f ~ ( h - 8 ) ; 8  , c - - ~ - ( ~ -  t )  t ~ ( ~ _ ~ y  K~l(h.~-)/8 . ( 6 . 1 )  

Taking account of formula (6.1), we can represent the asymptotic behavior in a complete 

neighborhood of the point (r = i, t = --i) as 

h--I + u _ _ - -  t ~ T ( ~  ; l ) / j ( q ) ,  c ' ~  (~ : l ) . /8(q)  ( 6 . 2 )  

for (~ + i)->0 and finite values of n. According to (6.1) as ~->~, we have 

(x + I) (• § 5) 
t 2 ( 3 ~ - -  1) K~(~-~ (6.3) 

a n d  t h e  f u n c t i o n s  f ~ ( n )  a n d  f 2 ( n )  m u s t  s a t i s f y  t h e  e q u a t i o n s  

a &  (4 - a) h" - -  (2 - -  h) 1~ - -  ~ ( - -  2~ 8 + S~ - -  ~) ~ + (2 - -  ,~) (h - -  0 8 1~ 
-- = --/~2hf~ ; ( 6 . 4 )  d/x -q- (2 - -  h) f~/~ -t- 2h (h - -  t) (3 - -  h) ]~ -}- ( h .  t) ~ (h - -  2) 1~ - -  h" (4 - -  h) [~ 
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d]= (h -- 2) i(4 - -  h) l, ~" - -  (2 - -  h) ]~ -I- h (2h ~ - -  8h ~- 4) .t~ -5 (2 - -  h) (h--i)~]~ : 

~ d-~ = - -  f ~  .... ( 2  - h )  ~ ~ ( h  - -  2 )  (~ f~]~ ....... ]o  - -  [ (4  - -  h) h ~ -  _ i )  ' ( 6 . 5 )  

t h e  a s y m p t o t i c  e q u a t i o n  ( 6 , 3 ) ,  a n d  f o r  s o m e  v a l u e  n = ~ :  t h e  c o n d i t i o n s  o n  t h e  f r e e  b o u n d -  
a r y .  As in Sec. 5, the solution of the problem is concentrated in the determination of the 
integral curve of Eq. (6.4), f~ = f=(f~), joining the points f~ = f~ = 1 with the point 
f:(~), f~(N~), corresponding to the free boundary. In Fig. 3 we show the scheme of zero 
and infinity isoc!ines of Eq. (6.4), the singular points of this equation, its integral -- 
the straight line (K): f~ =--f~ --and the infinity isoclines of Eq. (6.5)~ the straight 

LL~ : ]~ ---- • ~ [(h -- 2)(h -- ~)/~ _u (4 -- h)h]. By virtue of the uniqueness, the desired lines 

integral curve (5) can intersect the straight line (K) only at the singular points of Eq. 
(6.4), and if the solution is to be single-valued, it intersects the straight lines (L:,~) 
only at the singular points of Eq. (6.5). According to (6.2)~ the function f~(~) ~ 0 when 
n ~>~ 0. The zero isoclines will be the integral fa = 0 and the hyperbola 

]~ ---- (h - -  i)~ ( f l  - -  .f~o) (f~ - - / ~ o ) ,  where rio ---- h ( - -  h ~ + 4h - -  2 -T- ] / 5  - -  (h - - 3 )  ~) (~ = l ,  2), 
(h - -  i)  ~ (2 - -  h) 

and the infinity isocline will be the curve 

f~ (/~ --/~) (f2 -- ]~o~) f l  h (2 -- h),  where ]lcm : h 
2 --= h (2 - -  h )  ] 1 + 2 h -------i' 

] ~ _  h ( 4 - - h )  
( h - - l ) ( 2 - - h )  ~ 

with flo < f1= < f2= < f2o. 

saddle point; B ~= ( 2 _ h ) 2  , 

The singular points of Eq. (6.4) are: A(f~ = f2 = I)~ a 

1~ ~ ]  , a n o d e ;  C 1 = ~ - ~ - ] ,  1 ~ = 0  , a n o d e ;  

4 - - h h  ) 
D /I 2--hh--i' f2 = 0 , a saddle point; E (/i = i ~, f2 ~ ~ ~), dicritical nodes; and 

O(fl = f2 = 0), a node. 

The relative positions of points and curves shown in Fig. 3 are obtained by some simple 
calculations. According to the asymptotic formula (6.3), the integral curve (1) emanates 
from the saddle point A along its separatrix in the direction 

d/~/d/1 = - - ( u  + 5) / (3•  - -  t ) ,  

where for K > 0 it goes in the direction of increasing f~ and for K < 0 it goes in the 
direction of decreasing f~. 

A. K > 0. The separatrix of the saddle point A, coinciding with the curve (5), will 
inevitably reach the point C, since f2 = 0 is the integral of Eq. (6.4). According to the 
quadrature (6.5) when f2 varies from i to 0, the value of n will vary from ~ to 0, and as 
n->0, the function f2 ~ n -2/(h-*)(h-2), while f~ ~ h/(h -- i)' The curve n = 0 corresponds 
to the free boundary. This follows from the representation (6.2) and the above-described 
asymptotic behavior as ~+0. 

B. K < 0. The desired integral curve of Eq. (6.4) from the saddle point A along its 
separatrix, going in the direction of decreasing f, reaches the node B. From the node B, 
passing through the infinitely remote dicritical node E, the integral curve moves along the 
separatrix of the saddle point D, distinct from the integral f2 = 0, and reaches the point 
D (see Fig. 3). The resulting breakpoint in the integral curve at the node B is admissible, 
since the point B corresponds to the characteristic of the initial gasdynamics system. The 
equation of the free boundary for --i < t < --i + s and sufficiently small E in the principal 
term will be ~ = ~D, ~D < 0, where ~D is the value of ~ corresponding to the point D. The 
fact that the corresponding conditions are satisfied on the free boundary follows from the 
asymptotic formulas obtained in a neighborhood of the point D and the value of nD: 

V r (h + l) (4 --  h) [ f ( 4 - - h ) h  h - - 4 ( 4 - - h ) h  ~ 

From the asymptotic behavior of the resulting equation for the free boundary in the plane 
rt, 
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it follows that the motion of the free boundary when t > --i is accelerated. 

The main result of the investigation is the following: The velocity of the free 
boundary remains constant in the time interval (to, t~), where time to corresponds to the 
beginning of the flow and t: coincides with the time tf when the free boundary reaches the 
axis of the cylinder if the adiabatic index ~2, and t: < tf if ~>2. In particular, 
when ~>3, the time tl coincides with the time to if the gas was at rest before the flow 
began, 

io 
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EXTREMAL VALUES OF CYLINDER DRAG BEHIND A DISK IN SUPERSONIC FLOW 

I. A. Belov and E. F. Zhigalko UDC 533.601.1 

The authors examine axisymmetric supersonic flow over a cylinder of diameter D, ahead 
of which is mounted a disk of diameter d < D on a thin connecting piece of length I. The 
flow separates on the disk, and near the body surface there is a flow circulation region, 
separated from the external flow by a mixing zone which spans a certain "dividing stream 
area" originating from the disk edge and incident on the end of the cylinder. 

Taking account of the special features of the flow investigated, one can judge that the 
best procedure is to seek a solution of the problem based on a system of exact Navier--Stokes 
equations. However, with all the promise of this type of approach, even when adequately 
efficient numerical algorithms are available, a solution to the Navier-Stokes equations for 
a compressible fluid has been obtained as yet only for low and medium Reynolds numbers. 
An alternative approach is to construct an adequate mathematical model which would describe, 
as far as possible, the main characteristic features of the flow investigated. 

As such an approximate model we choose a numerical model in which a result is obtained 
by applying the "large particle" numerical method [i, 2] to the equations describing the 
motion of an ideal gas -- it reproduces the separated flow over the body in the process of 
establishing the solution corresponding to steady flow. The ideal fluid model has been used 
in a number of papers in investigating separated flows, including that at the front of a 
spiked body (ef. [3, 4]). Among the factors governing the fruitfulness of using this compu- 
tational model the main one is evidently that it reproduces reliably the basic elements of 
the flow outside the circulation zone. The shape and dimensions of this zone are determined 
largely by the geometry of the components. Here we locate a large-scale unit vortex, sepa- 
rated from the walls and the outer flow by a comparatively thin viscous layer in which the 
transverse pressure gradient is small and which does not appreciably affect the pressure 
distribution on the body surface, at least above a certain Reynolds number (from Re ~ 500, 
according to the data of [5]). One would expect that for the body of the composition con- 
sidered here, with d < D, I ~ D, the local Reynolds number for the flow in the circulation 
region will be large enough [5]. On the other hand, it is known that computational schemes 
for ideal gas flows similar to [i, 2], because of their inherent computational "dissipation" 
properties, give results with features characteristic of large Reynolds number flow. 
Finally, one should take into account the known idea that the base pressure depends only 
slightly on Re [6] in supersonic flow at large Reynolds number. 

These considerations support the expectation that the numerical model will in the main 
correctly reflect the actual fluid flow in the entire computed region. The results then ob- 
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